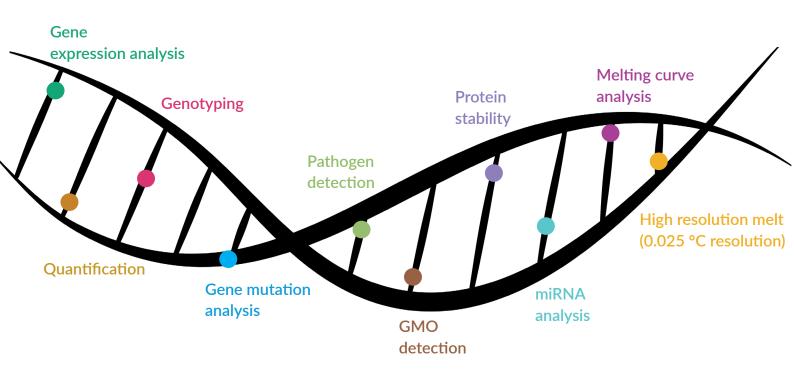


GFastGene® qF47 96-well Real-Time PCR Systems

*GFastGene® ロデー*マ FG-QPTC01, 4+1 Channel System

⑤*FastGene[®]* ロディマ アレレラ FG-QPTC02, 6 Channel System

www.nippongenetics.eu

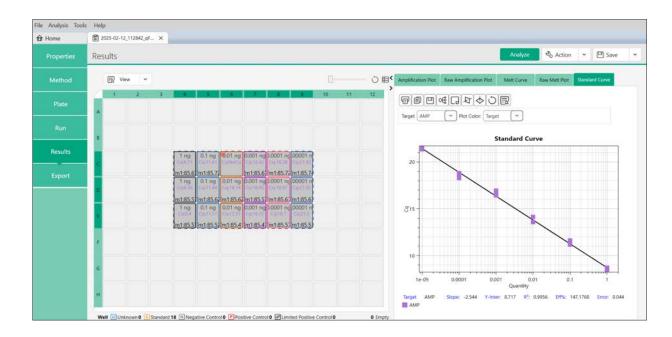


Next level qPCR systems

With qFYR, your setup is safeguarded from the start

Setting up a qPCR experiment should be straightforward, but a simple plate setup error can cost time, samples, and valuable data. The FastGene® qFYR systems guide you through the process in under three minutes—so you can be confident that everything is set up correctly before you start. And with simultaneous detection of all fluorescence channels, you get immediate, reliable data without the risk of losing results due to mistakes. Precision should never be left to chance.

The FastGene[®] qFYR systems were developed to meet highest laboratory standards and deliver reliable performance for various real-time PCR applications:



) qFYR Analysis Studio Software

Let the software do the work

Designed with researchers in mind, qFYR Analysis Studio Software streamlines your qPCR workflow, from experiment setup to data analysis, ensuring an easy and faster setup.

Simple & fast setup	Automated & reliable analysis	Flexible & scalable
Intuitive navigation, no steep	• Automatic baseline subtraction	• Run multiple qFYRs with one
learning curve	and Cq calculation	software
• Predefine and save settings for	Automated absolute and	Customizable settings for
future runs	relative quantification	different experiments
Auto-export results in Excel,	Multi-plate analysis for high-	• Modern UI design for seamless
PDF, or .txt	throughput research	experience

Increase your throughput

- Run multiple FastGene[®] qFYR systems from a single PC.
- Perform independent qPCR experiments simultaneously.

Multi plate analysis

- Combine data analysis from multiple runs.
- Compare experiments directly in a single, unified dataset.

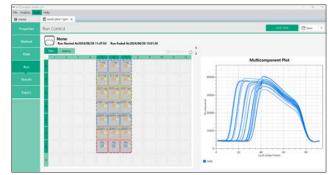
le Ar																	
t Hor	ne	B 2025	-03-13_101027	×													
esults	plat re	isuts plate.	4				Standard Curve	e 💌 Impo	Ampl	lification Plot	Raw Amplificatio	n Plot Melt C	Curve Raw 1	Melt Plot Star	ndard Curve		
	2	3	4	3	7	8 9	10	11. 12		ിതിനാപ	। । । । । ।		Tarnet Amn				
				1 ng 1	ng 1 ng									<u> </u>			
			1	0.1 ng 0.1	ng 0.1 ng				Plo	t Type: ARn vs (Cycle 🖌 G	raph Type: Linea	r 🗸 Plot C	olor: Target	 - 		
			C	.01 ng 0.0	ng 0.01 ng								Amplificati	on Plot			
			10	001 ng 0.00	1 ng 0.001 ng					-			ranpineur				
			5	0001 nc 0.00	11 nc 0.0001 nd				5	10		1	-11	11	1		
			1		01 n 00001 n				9			//				//	
											the second second second						
					BA EX					0	5	10 15	20	25	30	35	40
					c ntc					0	5	10 15	20 Cycle	25	30	35	40
					BA EX					Contraction of the	5	10 15	20 Cycle	25	30	35	40
sailt f	sta Standa	eri Cursue			BA EX					0	5	10 15	20 Cycle	25	30	35	1210
suit C				ntc r		Ovel	G	Ga Mean		Amp				25 1 1m1	3440		Exp
•	Well	Omit	Sample Na.		BA EX	Dyes	Gq	Cq Mean	Cq SD	0	S Quantity M		20 Cycle Result		30 Tm2	35 Tm3	40 Epp. Im
*) 1	Well Plate 1	Omit		ntc r		Dyes	Cq	Cq Mean		Amp					3440		Exp
* 1 2	Well Plate I Plate I	Omit.		ntc r		Oyes	Cq	Cq Mean		Amp					3440		Бар
*) 1	Well Plate 1	Omit		ntc r		Oyes	Cq	Cq Mean		Amp					3440		Бар
* 1 2 3	Well Plate I Plate I	Omit.		ntc r		Dyes	Cq	Cq Mean		Amp					3440		bp
1	Well Plate 1 Plate 1 Plate 1	Omit III III		ntc r		Dyes	Cg 10.17	Cq Mean		Amp					3440		Бр

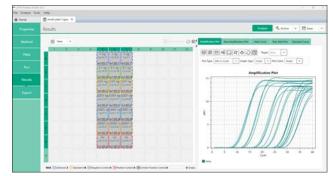

No missed steps, no guesswork - follow an intuitive experiment workflow

With a clear 6-step guide and easy navigation, the qFYR Analysis Studio Software ensures every step is completed correctly.

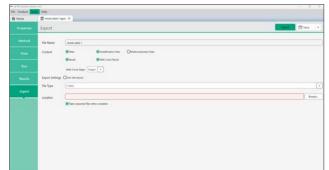
1. Define your experiment

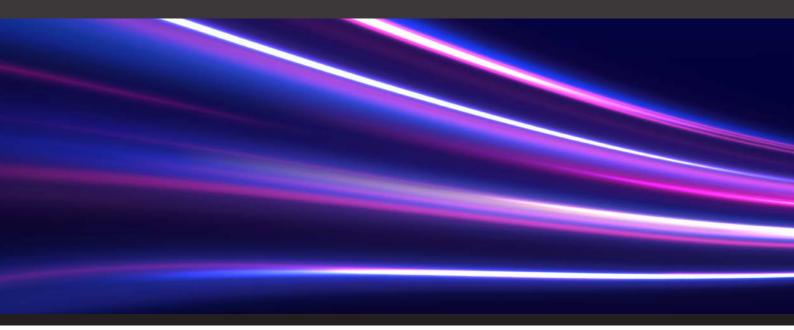
Contraction of the local division of the loc	riment Properties		Blas +
Martine Law			
	mant Name	2017-01-12,114103	Commentation
	ment Type	failing gift (*)	
Plante	1900	truren (*)	
	inant Type	Tanàna (*	
	mature Cantrol	(ho) (*)	
Expert Volume		a 4	
Corre		(hite isani (*	
		The following is optional	
Sergi	ute Type - Optional	(0148 (*)	The extended for tensmoring alcolute-guerritor.
	Masufacturer - Optimal	100 cm	
Sealery	g Method - Optional	(000 (*)	


2. Personalize the protocol


3. Design your plate

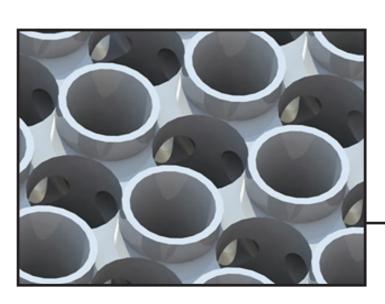
ir Aralysis Tan												
B Hote	S wate per tiges X		 	-	-				_			-
	Assign Targets and Same	vles							1	4500 *	2 leve	
	10 vm -		00,	Set	-	Quink Sets	•					
Pate	Contraction of the local	A DEC DEC DEC DE	 .0	-	Savy	711.00				1	$\Phi_{\rm s}A_{\rm c}{\rm for}$	
Page .		and the set		-			angle faire			presents.		×
	1 1 1 1	ating along along		0								ì
	and the second second	All og Gilling All og				801 mg						×
						1001 mg						×
		part at harr at surred			•	anoset mp						×
						6.00001 mg						×
		FORD THE CORT AND THE CORT AND			•							*
		Annual of Annual of Annual of		-	Targe			_	_		4 Artim	2
		and the start			•	Tergetti hime	1 Yeller	•	Canada Ca	1 an	Channey	5
				1						100 1.00		

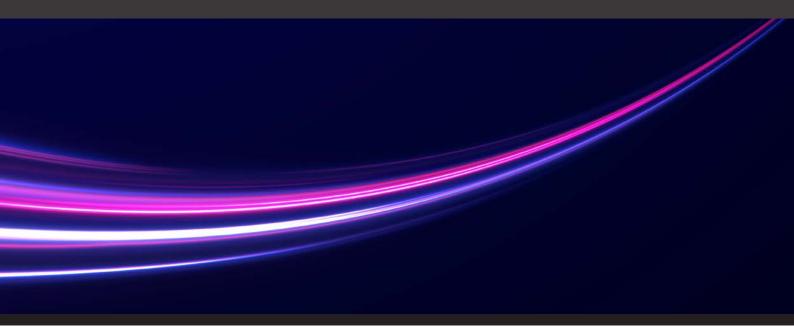

4. Start and monitor the run



5. Analyze your results

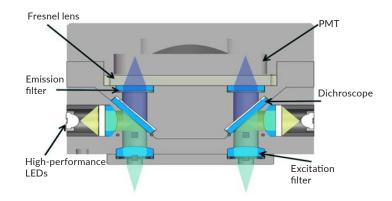
6. Export and keep your data safe



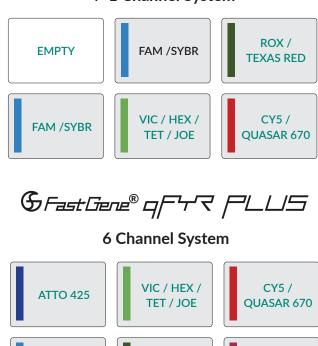

Innovative qPCR technology

Superior thermal consistency you can trust

- The qFYR systems ensure ±0.2°C precision and uniformity across all 96 wells, eliminating edge effects and delivering reliable results every time.
- A lightweight, hollow thermal block enables ultra-fast ramp rates (up to 6°C/s), speeding up qPCR runs without sacrificing accuracy.
- Advanced Peltier technology guarantees stable, reproducible performance—boosting confidence and reducing repeat runs.



High-sensitivity optical detection – clarity at every cycle


- qFYR combines a high-quality PMT with a precision Fresnel lens to capture even the faintest signals.
- The short focal length minimizes signal loss and cross-talk, delivering sharp, accurate quantification—ideal for low-abundance targets.

4+1 Channel System

Multi-color fluorescence detection – fast, efficient multiplexing

- qFYR's multi-channel system detects all standard qPCR dyes in just 8 seconds per scan, streamlining data collection.
- A dual FAM/SYBR channel in the qFYR 4+1 channel system accelerates HRM and melt curve analysis—cutting run time in half and boosting efficiency.

ROX /

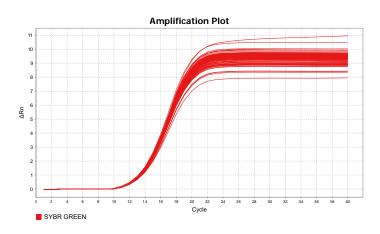
TEXAS RED

FAM /SYBR

Cy5.5/Quasar

705/Alexa Fluor

680


Results you can trust

High-quality data, every time

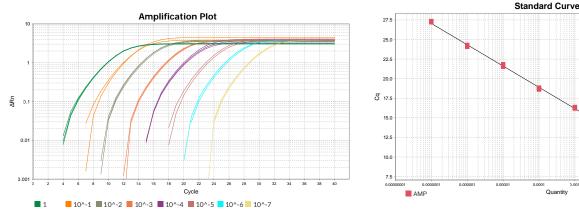
FastGene[®] qFYR systems deliver reliable, precise qPCR results with advanced optics and a high-precision thermal block. Engineered for accuracy and reproducibility, it ensures optimal amplification conditions for every application.

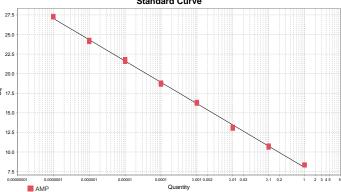
Unmatched consistency across the plate

Eliminate well-to-well variation for consistent, reproducible results, even with as little as 1 ng of plasmid DNA. With a mean Cq of 13.89 ± 0.055 , you get consistent, reproducible data across all 96 wells—no second-guessing required.

Detect even the smallest differences

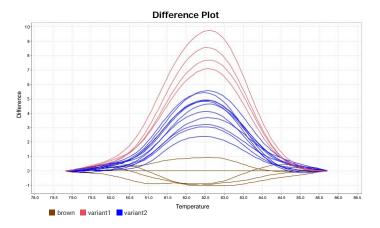
FastGene[®] qFYR's high sensitivity enables detection of subtle changes—as small as a 1.3-fold difference in target concentration. Using AMP-specific primers and a dilution series starting at 0.01 ng, it reliably distinguishes even the slightest variations in expression.



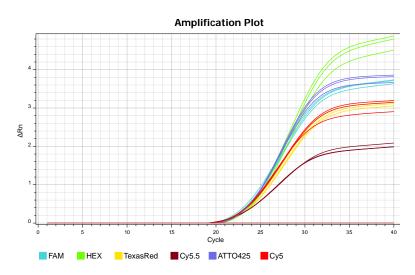


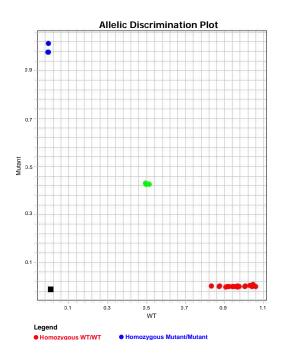
Intuitive data visualization

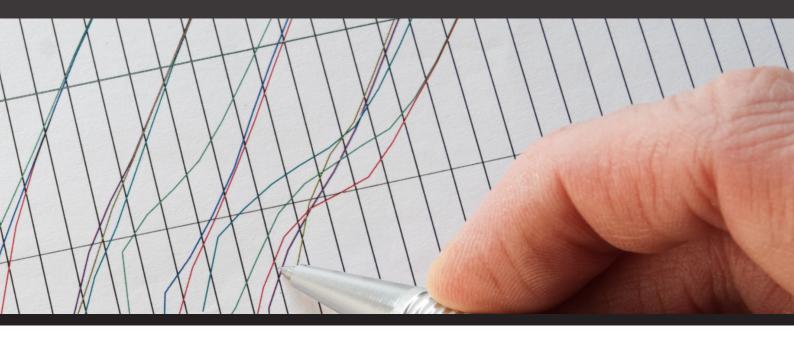
Broad dynamic range - precise quantification


FastGene® qFYR systems deliver precise, reliable results across a wide range of template concentrations. With highest efficiency in standard curve generation, you can count on consistent quantificationwhether working with high or low inputs.

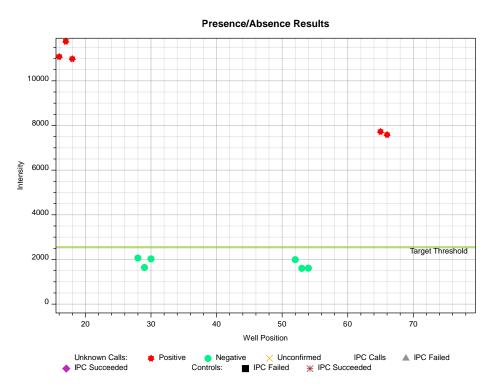
Integrated HRM – simplified SNP analysis

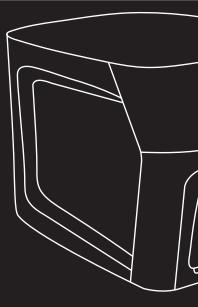

The software includes high-resolution melt curve analysis for accurate SNP detection-easily distinguishing variants like brown vs. blue eye alleles from blood samples.


Powerful multiplexing - maximize efficiency


With FastGene[®] qFYR, you can detect up to 4 targets per well; qFYR Plus increases that capacity to 6, helping you save time, conserve reagents, and reduce sample usage without sacrificing precision.

Effortless SNP analysis – genotyping made simple


With clear cluster plots and automatic genotype calling, FastGene[®] qFYR makes it easy to distinguish allelic populations, no manual interpretation needed.


Presence/absence - instant confirmation

Quickly confirm target presence. FastGene[®] qFYR software simplifies probe-based assays, while providing quantitative data.

FastGene® qFYR Analysis Studio – powerful, user-friendly software

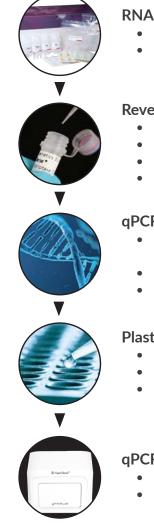
- Automatic data interpretation instantly analyze qPCR, HRM, genotyping, and multiplexing results with intelligent, experiment-specific tools.
- Clear, customizable visuals easily interpret results with intuitive charts and export high-quality images, including vector formats.
- All-in-one analysis from standard curves to SNP genotyping, everything is integrated—no need for additional software.

Technical specifications

	Optical Detection System	
	FastGene [®] qFYR (FG-QPTC01)	FastGene [®] qFYR Plus (FG-QPTC02)
Excitation source	4 single-color high-efficiency LEDs (maintenance-free, working life >100,000 hours)	6 single-color high-efficiency LEDs (maintenance-free, working life >100,000 hours)
Detector	Highly sensitive PMT (photo multiplier tube) with Fresnel lens	Highly sensitive PMT (photo multiplier tube) with Fresnel lens
Detector position	Top of the block	Top of the block
Detection sensitivity	1 copy of the target sequence	1 copy of the target sequence
Scanning principle	Time-resolved scanning technology	Time-resolved scanning technology
System sensitivity	Distinguishable 1.33-fold copy number difference in singleplex reactions	Distinguishable 1.33-fold copy number difference in singleplex reactions
Detection time	 Standard mode (full channel): 8.5 seconds/96-well plate; Fast mode (dual FAM): 4 seconds/96-well plate 	Standard mode (full channel): 8.5 seconds/96-well plate
Excitation/ detection	Excitation range: 455–650 nm;Scope of test: 510–715 nm	 Excitation range: 415-685 nm; Scope of test: 455-745 nm
Fluorescence channel number	4 channels (2x FAM)	6 channels
Dye compatibility	 FAM/SYBR Green VIC/HEX/TET/JOE ROX/Texas Red, Mustang Purple Cy5/LIZ 	 FAM/SYBR Green VIC/HEX/TET/JOE ROX/Texas Red, Mustang Purple Cy5/LIZ Cy5.5/Quasar 705/Alexa Fluor 680 ATTO 425

& Fast Gene®

& Fast Gene® gPyR PLUS


	Thermal Block	
	FastGene [®] qFYR (FG-QPTC01)	FastGene [®] qFYR Plus (FG-QPTC02)
Block capacity	96	96
Sample volume	1-50 μΙ	1-50 μΙ
Heating/cooling method	Peltier (6 temperature control modules)	Peltier (6 temperature control modules)
Temperature control technology	Hollow-out module combined with edge temperature compensation technology	Hollow-out module combined with edge temperature compensation technology
Maximum ramp rate	 6 °C/s (thermal block) 4 °C/s (sample) 	 6 °C/s (thermal block) 4 °C/s (sample)
Temperature setting range	4-100 °C	4-100 °C
Heated lid	Electronic automatic lid	Electronic automatic lid
Temperature accuracy	± 0.2 °C	± 0.2 °C
Temperature uniformity	± 0.2 °C	± 0.2 °C
Gradient zone	12 columns	12 columns
Gradient range	1-36 °C	1-40 °C
Linear dynamic range	10 orders of magnitude: 1-10 ¹⁰ copies	10 orders of magnitude: 1-10 ¹⁰ copies
Software	FastGene® qFYR Analysis Studio	FastGene® qFYR Analysis Studio

F

) qPCR workflow

NIPPON Genetics EUROPE qPCR Portfolio – complete solutions from start to finish

From RNA isolation and enzymes to qPCR reagents, premium plastics, and the advanced FastGene® qFYR Real-Time PCR Systems—we provide everything you need for a seamless qPCR workflow.

RNA Isolation Kits

- FastGene® RNA Basic Kit
- FastGene® RNA Premium Kit

Reverse Transcription

- FastGene[®] Scriptase Basic
- FastGene[®] Scriptase II
- FastGene[®] Scriptase III
- FastGene® Scriptase Ready Mixes

qPCR Reaction Mixes

- FastGene® Probe One Step Mix with UDG
- FastGene[®] 2x IC Green Mixes
- FastGene[®] 2x Probe Mixes

Plastics

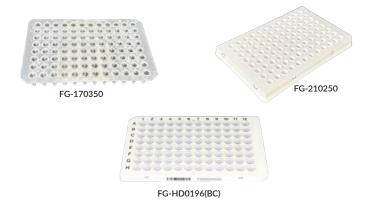
- FastGene® PCR Tubes
- FastGene® PCR 8-well strips
- FastGene[®] PCR plates

qPCR Cycler


- FastGene® qFYR
- FastGene® qFYR Plus

More information

Ordering information


Cat. No.	Product
FG-QPTC01	FastGene® qFYR Real-Time PCR System (4 + 1 channels)
FG-QPTC02	FastGene® qFYR Plus Real-Time PCR System (6 channels)

Get the right consumables for the qFYR

The FastGene[®] qFYR systems are compatible with low-profile (0.1 mL) PCR tubes/8-well PCR tube strips with transparent, flat tops, as well as non-skirted or semi-skirted low profile 96 well PCR reaction plates. It is not compatible with high-profile (0.2 mL) PCR reaction tube and convex tube covers.

Cat. No.	Product
FG-170350	Non-skirted, low-profile 96-well plate
FG-210250	Semi-skirted, low-profile 96-well plate
FG-HD0196(BC)	Semi-skirted, low-profile Two-component 96-well plate (optional barcode)
FG-018WF	0.1 ml clear 8-well strips, single flat caps
FG-19FC	0.1 ml white 8-well strips, flat cap strips

Get your personal demo of the FastGene® qFYR!

Get in touch with us and you will receive a complete product demonstration tailored to your specific needs!

www.nippongenetics.eu

NIPPON Genetics EUROPE GmbH

+49 2421 55496 0
+49 2421 55496 11

www.nippongenetics.eu

MK-BR-QFYR-3.0

