Enzyme-Finder

Search for your restriction enzyme. Just add the name or a sequence to our enzyme finder.

Back to products ‘Cloning’

Name Sequence ? Overhang Properties ? Isoschizomere
Aat II G↑ACGT↓C 3′ ACGT
  • 37°
  • IV
  • 65°
  • CpG
  • FcB
ZraI*
Acc I GT↓MK↑AC 5′ MK
  • 37°
  • IV
  • 80°
  • CpG
  • FcB
Bsh1236I, BspFNI, BstFNI, BstUI, MvnI
Acc III T↓CCGG↑A 5′ CCGG
  • 65°
  • AccIII
  • No
  • Dam
Aor13HI, BseAI, Bsp13I, BspEI, Kpn2I, MroI
Acu I CTGAAGN₁₄↑NN↓ 3′ NN
  • 37°
  • IV
  • 65°
  • FcB
Eco57I
Afl II C↓TTAA↑G 5′ TTAA
  • 37°
  • IV
  • 65°
  • FcB
BfrI, BspTI, BstAFI, MspCI, Vha464I
Age I A↓CCGG↑T 5′ CCGG
  • 37°
  • IV
  • 65°
  • CpG
  • FcB
AsiGI, BshTI, CspAI, PinAI
Alw I GGATCNNNN↓N↑ 5′ N
  • 37°
  • IV
  • No
  • Dam
  • FcB
AclWI, BspPI
Alw26 I GTCTCN↓NNNN↑ 5′ NNNN
  • 37°
  • IV
  • 65°
  • CpG
  • FcB
BcoDI, BsmAI, BstMAI
Apa I G↑GGCC↓C 3′ GGCC
  • 25°
  • IV
  • 65°
  • CpG
  • Dcm
  • FcB
Bsp120I*, PspOMI*
ApaL I G↓TGCA↑C 5′ TGCA
  • 37°
  • IV
  • No
  • CpG
  • FcB
Alw44I, VneI
Apo I R↓AATT↑Y 5′ AATT
  • 50°
  • III
  • 80°
  • FcB
AcsI, XapI
Asc I GG↓CGCG↑CC 5′ CGCG
  • 37°
  • IV
  • 65°
  • CpG
  • FcB
PalAI, SgsI
Ava I C↓YCGR↑G 5′ YCGR
  • 37°
  • IV
  • 80°
  • CpG
  • FcB
Ama87I, BmeT110I, BsiHKCI, BsoBI, Eco88I
Ava II G↓GWC↑C 5′ GWC
  • 37°
  • IV
  • 80°
  • CpG
  • Dcm
  • FcB
Bme18I, Eco47I, SinI, VpaK11BI
Avr II C↓CTAG↑G 5′ CTAG
  • 37°
  • IV
  • 80°
  • FcB
AspA2I, BlnI, XmaJI
Bal I TGG⇅CCA Blunt
  • 37°
  • BalI
  • 65°
  • Dcm
MlsI, MluNI, Mox20I, MscI, Msp20I
BamH I G↓GATC↑C 5′ GATC
  • 37°
  • BamHI
  • No
  • FcB
-
Bcl I T↓GATC↑A 5′ GATC
  • 50°
  • III
  • No
  • Dam
  • FcB
FbaI, Ksp22I
Bgl I GCCN↑NNN↓NGGC 3′ NNN
  • 37°
  • III
  • 65°
  • CpG
  • FcB
-
Bgl II A↓GATC↑T 5′ GATC
  • 37°
  • III
  • No
  • FcB
-
Bsa I GGTCTCN↓NNNN↑ 5′ NNNN
  • 37°
  • IV
  • 65°
  • CpG
  • Dcm
  • FcB
Bso31I, BspTNI, Eco31I
BsaW I W↓CCGG↑W 5′ CCGG
  • 60°
  • IV
  • 80°
  • FcB
-
BsiW I C↓GTAC↑G 5′ GTAC
  • 55°
  • III
  • 80°
  • CpG
  • FcB
Pfl23II, PspLI
BsmB I CGTCTCN↓NNNN↑ 5′ NNNN
  • 55°
  • III
  • 80°
  • CpG
  • FcB
Esp3I
BsoB I C↓YCGR↑G 5′ YCGR
  • 37°
  • IV
  • 80°
  • FcB
Ama87I, AvaI, BmeT110I, BsiHKCI, Eco88I
BspE I T↓CCGG↑A 5′ CCGG
  • 37°
  • III
  • 80°
  • CpG
  • Dam
  • FcB
AccIII, Aor13HI, BseAI, Bsp13I, Kpn2I, MroI
BsrF I R↓CCGG↑Y 5′ CCGG
  • 37°
  • IV
  • No
  • CpG
  • FcB
Bse118I, BssAI, Cfr10I
BstY I R↓GATC↑Y 5′ GATC
  • 60°
  • II
  • 80°
  • FcB
BstX2I, MflI, PsuI
BtsC I GGATG↑NN↓ 3′ NN
  • 50°
  • IV
  • 80°
  • FcB
BseGI, BstF5I, FokI*
Cfr10 I R↓CCGG↑Y 5′ CCGG
  • 37°
  • Cfr10I
  • No
  • CpG
  • FcB
Bse118I, BsrFI, BssAI
Cfr42 I CC↑GC↓GG 3′ GC
  • 37°
  • I
  • 65°
  • CpG
  • FcB
KspI, SacII, Sfr303I, SgrBI
Cfr9 I C↓CCGG↑G 5′ CCGG
  • 37°
  • III
  • 65°
  • CpG
SmaI*, TspMI, XmaI
Cla I AT↓CG↑AT 5′ CG
  • 37°
  • IV
  • 65°
  • CpG
  • Dam
  • FcB
Bsa29I, BseCI, BshVI, BspDI, Bsu15I, BsuTUI
CviA I ↓GATC↑ 5′ GATC
  • 37°
  • IV
  • 65°
  • Dam
  • FcB
-
Dde I C↓TNA↑G 5′ TNA
  • 37°
  • III
  • 65°
  • FcB
BstDEI, HpyF3I
Dpn I GA⇅TC Blunt
  • 37°
  • IV
  • 80°
  • FcB
MalI
Dpn II ↓GATC↑ 5′ GATC
  • 37°
  • DpnII
  • 65°
  • Dam
  • FcB
Bsp143I, BssMI, BstKTI*, BstMBI, Kzo9I, MboI, NdeII, Sau3AI
Dra I TTT⇅AAA Blunt
  • 37°
  • IV
  • 65°
  • FcB
-
Eag I C↓GGCC↑G 5′ GGCC
  • 37°
  • III
  • 65°
  • CpG
  • FcB
BseX3I, BstZI, EclXI, Eco52I
Eco47 I G↓GWC↑C 5′ GWC
  • 37°
  • III
  • 65°
  • CpG
  • Dcm
  • FcB
AvaII, Bme18I, SinI, VpaK11BI
EcoN I CCTNN↓N↑NNAGG 5′ N
  • 37°
  • IV
  • 65°
  • FcB
BstENI, XagI
EcoO109 I RG↓GNC↑CY 5′ GNC
  • 37°
  • IV
  • 65°
  • Dcm
  • FcB
-
EcoR I G↓AATT↑C 5′ AATT
  • 37°
  • EcoRI
  • 65°
  • CpG
  • FcB
-
EcoR V GAT⇅ATC Blunt
  • 37°
  • III
  • 65°
  • CpG
  • FcB
Eco32I
EcoT38 I G↑RGCY↓C 3′ RGCY
  • 37°
  • IV
  • 65°
  • FcB
BanII, Eco24I, FriOI
Esp3 I CGTCTCN↓NNNN↑ 5′ NNNN
  • 37°
  • IV
  • 65°
  • CpG
  • FcB
BsmBI
Fok I GGATGN₉↓NNNN↑ 5′ NNNN
  • 37°
  • IV
  • 65°
  • CpG
  • Dcm
  • FcB
BseGI*, BstF5I*, BtsCI*
Fsp I TGC⇅GCA Blunt
  • 37°
  • IV
  • 65°
  • CpG
  • FcB
Acc16I, NsbI
Hae II R↑GCGC↓Y 3′ GCGC
  • 37°
  • IV
  • 80°
  • CpG
  • FcB
BfoI, BstH2I
Hae III GG⇅CC Blunt
  • 37°
  • IV
  • 80°
  • FcB
BshFI, BsnI, BimgI, BsuRI
Hga I GACGCN₅↓NNNNN↑ 5′ NNNNN
  • 37°
  • I
  • 65°
  • CpG
  • FcB
CseI
Hinc II GTY⇅RAC Blunt
  • 37°
  • IV
  • 65°
  • CpG
  • FcB
HindII
XmaI C↓CCGG↑G 5′ CCGG
  • 37°
  • IV
  • 65°
  • CpG
  • FcB
Cfr9I, SmaI*, TspMI
Hind II GTY⇅RAC Blunt
  • 37°
  • II
  • 65°
  • CpG
  • FcB
HincII
Hind III A↓AGCT↑T 5′ AGCT
  • 37°
  • II
  • 80°
  • FcB
-
Hinf I G↓ANT↑C 5′ ANT
  • 37°
  • IV
  • 80°
  • CpG
  • FcB
-
HinP1 I G↓CG↑C 5′ CG
  • 37°
  • II
  • 65°
  • CpG
  • FcB
AspLEI*, BstHHI*, CfoI*, HhaI*, Hin6I, HspAI
Hpa I GTT⇅AAC Blunt
  • 37°
  • IV
  • No
  • CpG
  • FcB
KspAI
Hpa II C↓CG↑G 5′ CG
  • 37°
  • IV
  • 80°
  • CpG
  • FcB
BsiSI, HapII, MspI
Hph I GGTGAN₇↑N↓ 3′ N
  • 37°
  • IV
  • 65°
  • Dam
  • FcB
AsuHPI
Hpy188 I TC↑N↓GA 3′ N
  • 37°
  • IV
  • 65°
  • Dam
  • FcB
-
Hpy99 I ↑CGWCG↓ 3′ CGWCG
  • 37°
  • IV
  • 65°
  • CpG
  • FcB
-
HpyCH4 V TG⇅CA Blunt
  • 37°
  • IV
  • 65°
  • FcB
HpySE526I, MaeII, TaiI*
Kpn I G↑GTAC↓C 3′ GTAC
  • 37°
  • I
  • No
  • FcB
Acc65I*, Asp718I*
Kpn2 I T↓CCGG↑A 5′ CCGG
  • 55°
  • I
  • 80°
  • CpG
  • FcB
AccIII, Aor13HI, BseAI, Bsp13I, BspEI, MroI
Lsp1109 I GCAGCN₈↓NNNN↑ 5′ NNNN
  • 37°
  • III
  • 65°
  • FcB
BbvI, BseXI, BstV1I
Mbo I ↓GATC↑ 5′ GATC
  • 37°
  • III
  • 65°
  • CpG
  • Dam
  • FcB
Bsp143I, BssMI, BstKTI*, BstMBI, DpnII, Kzo9I, NdeII, Sau3AI
Mbo II GAAGAN₇↑N↓ 3′ N
  • 37°
  • II
  • 65°
  • Dam
  • FcB
-
Mlu I A↓CGCG↑T 5′ CGCG
  • 37°
  • III
  • 65°
  • CpG
  • FcB
-
Xho I C↓TCGA↑G 5′ TCGA
  • 37°
  • IV
  • 80°
  • CpG
  • FcB
PaeR7I, Sfr274I, SlaI
Mnl I CCTCN₆↑N↓ 3′ N
  • 37°
  • II
  • 65°
  • FcB
-
Mse I T↓TA↑A 5′ TA
  • 37°
  • IV
  • 65°
  • FcB
SaqAI, Tru1I, Tru9I
Msp I C↓CG↑G 5′ CG
  • 37°
  • IV
  • No
  • FcB
BsiSI, HapII, HpaII
MspA1 I CMG⇅CKG Blunt
  • 37°
  • IV
  • 65°
  • CpG
  • FcB
-
Mun I C↓AATT↑G 5′ AATT
  • 37°
  • II
  • 65°
  • FcB
MfeI
Nae I GCC⇅GGC Blunt
  • 37°
  • I
  • 65°
  • CpG
  • FcB
MroNI*, NgoMIV*, PdiI
Nco I C↓CATG↑G 5′ CATG
  • 37°
  • III
  • 65°
  • FcB
Bsp19I
Nde I CA↓TA↑TG 5′ TA
  • 37°
  • IV
  • 65°
  • FcB
FauNDI
NgoM IV G↓CCGG↑C 5′ CCGG
  • 37°
  • IV
  • 80°
  • CpG
  • FcB
MroNI, NaeI*, PdiI*
Nhe I G↓CTAG↑C 5′ CTAG
  • 37°
  • II
  • 65°
  • CpG
  • FcB
AsuNHI, BmtI*, BspOI*
Nla IV GGN⇅NCC Blunt
  • 37°
  • IV
  • 65°
  • CpG
  • Dcm
  • FcB
BmiI, BspLI, PspN4I
Not I GC↓GGCC↑GC 5′ GGCC
  • 37°
  • III
  • 65°
  • CpG
  • FcB
CciNI
Nru I TCG⇅CGA Blunt
  • 37°
  • III
  • 65°
  • CpG
  • Dam
  • FcB
Bsp68I, BtuMI, RruI
Nt.BstNB I GAGTCNNNN↓ Nicht vorhanden
  • 55°
  • III
  • 80°
  • FcB
-
PaeR7 I C↓TCGA↑G 5′ TCGA
  • 37°
  • IV
  • No
  • CpG
  • FcB
Sfr274I, SlaI, XhoI
PflM I CCAN↑NNN↓NTGG 3′ NNN
  • 37°
  • III
  • 65°
  • Dcm
  • FcB
AccB7I, Van91I
Ple I GAGTCNNNN↓N↑ 5′ N
  • 37°
  • IV
  • 65°
  • CpG
  • FcB
MlyI*, PpsI, SchI*
PluT I G↑GCGC↓C 3′ GCGC
  • 37°
  • IV
  • 65°
  • CpG
  • FcB
DinI*, EgeI*, EheI*, KasI, SfoI*
PspG I ↓CCWGG↑ 5′ CCWGG
  • 37°
  • IV
  • No
  • Dcm
AjnI, BciT130I*, BseBI*, BstNI*, Bst2UI*, EcoRII, MvaI*, Psp6I
Pst I C↑TGCA↓G 3′ TGCA
  • 37°
  • III
  • 80°
  • FcB
BspMAI
Xba I T↓CTAG↑A 5′ CTAG
  • 37°
  • IV
  • 65°
  • Dam
  • FcB
-
Tth111 I GACN↓N↑NGTC 5′ N
  • 65°
  • IV
  • No
  • FcB
PflFI, PsyI
TspM I C↓CCGG↑G 5′ CCGG
  • 75°
  • IV
  • No
  • CpG
  • FcB
Cfr9I, SmaI*, XmaI
Taq I T↓CG↑A 5′ CG
  • 65°
  • III
  • 80°
  • Dam
  • FcB
-
Swa I ATTT⇅AAAT Blunt
  • 25°
  • III
  • 65°
  • FcB
SmiI
Pvu I CG↑AT↓CG 3′ AT
  • 37°
  • III
  • No
  • CpG
  • FcB
Ple19I
Pvu II CAG⇅CTG Blunt
  • 37°
  • II
  • No
  • FcB
-
Rsa I GT⇅AC Blunt
  • 37°
  • IV
  • 65°
  • CpG
  • FcB
AfaI, Csp6I*, CviQI*, RsaNI*
Sac I G↑AGCT↓C 3′ AGCT
  • 37°
  • I
  • 65°
  • FcB
Ecl136II*, EcoICRI*, Eco53kI*, Psp124BI, SstI
Sac II CC↑GC↓GG 3′ GC
  • 37°
  • IV
  • 65°
  • CpG
  • FcB
Cfr42I, KspI, Sfr303I, SgrBI
Sal I G↓TCGA↑C 5′ TCGA
  • 37°
  • III
  • 65°
  • CpG
  • FcB
-
Sau96 I G↓GNC↑C 5′ GNC
  • 37°
  • IV
  • 80°
  • CpG
  • Dcm
  • FcB
AspS9I, BmgT120I, Cfr13I, PspPI
Sbf I CC↑TGCA↓GG 3′ TGCA
  • 37°
  • IV
  • 80°
  • FcB
SdaI, Sse8387I
Sca I AGT⇅ACT Blunt
  • 37°
  • III
  • 80°
  • FcB
ZrmI
Sda I CC↑TGCA↓GG 3′ TGCA
  • 37°
  • IV
  • 80°
  • FcB
SbfI, Sse8387I
Sfi I GGCCN↑NNN↓NGGCC 3′ NNN
  • 50°
  • II
  • No
  • CpG
  • Dcm
  • FcB
-
SgrA I CR↓CCGG↑YG 5′ CCGG
  • 37°
  • IV
  • 65°
  • CpG
  • FcB
-
Sma I CCC⇅GGG Blunt
  • 25°
  • IV
  • 65°
  • CpG
  • FcB
Cfr9I*, TspMI*, XmaI*
SnaB I TAC⇅GTA Blunt
  • 37°
  • IV
  • 80°
  • CpG
  • FcB
BstSNI, Eco105I
Spe I A↓CTAG↑T 5′ CTAG
  • 37°
  • IV
  • 80°
  • FcB
AhlI, BcuI
Sph I G↑CATG↓C 3′ CATG
  • 37°
  • II
  • 65°
  • FcB
PaeI
Sse9 I ↓AATT↑ 5′ AATT
  • 55°
  • I
  • 65°
  • FcB
MluCI, TasI
Ssp I AAT⇅ATT Blunt
  • 37°
  • IV
  • 65°
  • FcB
-
Stu I AGG⇅CCT Blunt
  • 37°
  • IV
  • 65°
  • Dcm
  • FcB
Eco147I, PceI, SseBI
StyD4 I ↓CCNGG↑ 5′ CCNGG
  • 37°
  • IV
  • 65°
  • CpG
  • Dcm
  • FcB
Bme1390I*, BmrFI*, BstSCI, MspR9I*, ScrFI*

Double digest − Buffer compatibility chart

Performing two digestions simultaneously saves a lot of time.

Check the buffer compatibility at the FastGene® Double Digest Chart:

DOWNLOAD

Restriction Endonucleases

What are Restriction Enzymes?

Restriction enzmyes recognize short DNA sequences and cleaves double-stranded DNA at or near a specific recognition site. Restriction enzmyes are classified into four types, based on their subunit structure, cofactor requirements and specificity of cleavage.

3,000 different restriction enzymes have been discovered, which recognize over 230 distinct DNA sequences. These enzymes are routinely used for DNA modification around the world and are an indispensable tool in molecular cloning.

 

Historical background

The basis for the research of restriction enzymes goes back to the work of Luria and colleagues in the early 1950s [1]. Luria observed that the bacteriophage λ can grow good in one strain of E.coli (e.g. E.coli C), but often poorly in another E.coli strain (e.g. E.coli K). The host cell (E.coli K) was known as the restriction host and appears to have the ability to reduce the biological activity of the phage λ.

The first-time that the term restriction enzyme was mentioned was in the 1960s in the laboratories of Arber and Meselson. They found out that the restriction is caused by an enzymatic cleavage of the phage DNA. The enzyme involved in this process was termed “restriction enzyme” [2, 3]. The restriction enzymes studied by Arber and Meselson were type I restriction enzymes, which cleave DNA at random places away from the recognition site.

In 1970, Smith and colleagues isolated and describe the first type II restriction enzyme, Hind II [4]. Restriction enzymes of type II are much more useful for laboratory work, because they cleave DNA at the site of their recognition sequence. Due to its importance for molecular biology, Smith, Arber and Nathans shared the 1978 Nobel Prize for Medicine and Physiology for their discovery of restriction enzymes and their application to molecular genetics.

Recognition sequences

All restriction endonucleases recognize a specific DNA sequence. The recognition sequence is usually palindromic or partially palindromic, meaning the base sequence reads the same backwards and forwards. Restriction enzymes can cleave double stranded DNA either at the center of both strands to yield “blunt ends” or at a staggered position leaving overhangs called “sticky ends”.

 

Different Types of restriction enzymes

Based on the structure, cofactor requirements and specificity of cleavage there are four types of restriction enzymes (Types I, II, III, and IV).

Type I restriction enzymes cleaves the DNA at a random location far away from the recognition sequence. These enzymes require both ATP and S-adenosyl-L-methionine to function.

Type II restriction enzymes cleaves the DNA within or near the recognition sequence. These enzymes do not require ATP and are independent from methylase. The type II enzymes are the most useful restriction endonucleases for the daily laboratory work. All our NIPPON Genetics EUROPE restriction enzymes are from type II.

Type III restriction enzymes cleaves DNA about 20 – 25 base pairs away from the recognition sequence. They require both ATP and S-adenosyl-L-methionine to function.

Type IV restriction enzymes cleaves only modified, typically methylated DNA in contrast to the types I-III, which are usually inhibited by methylation.

 

Double digestion

A vector and an insert DNA can be cloned by cleaving with two different restriction enzymes, thus generating two different restriction ends. This strategy prevents the vector from being ligated without an insert, resulting in great reduction in self-ligation and increase in cloning efficiency. Most of our restriction enzymes are 100% active in the FastCut Buffer, making double digestion simple. Please look at the Double Digest Chart to make a double digestion with the four standard buffers.

DOUBLE DIGEST CHART (DOWNLOAD)

 

Activity of Unique FastGene® Buffer

Nippon Genetics provides four standard buffers that maximally support the activity of each restriction enzyme in the buffer provided with the enzyme. However, some restriction endonucleases require unique buffer for maximal activity. Take a look on the Double Digest Chart to select a buffer for double digestion if a restriction enzyme requires unique buffer. Listed are activities (%) of the most commonly used restriction endonucleases in the five unique FastGene® Buffers for EcoR I, BamH l, Acc III, Bal I, and Dpn Il, respectively. A restriction enzyme, if it is active in one of the four standard buffers, is usually active in a unique buffer. Therefore, it is possible to perform double digestion in a particular unique buffer. If digestion efficiency is low due to the suboptimal buffer, increase the amount of restriction endonucleases or incubate for a longer period of time.

DOUBLE DIGEST CHART (DOWNLOAD)

 

References

[1] Luria and Human (1952) A nonhereditary, host-induced variation of bacterial viruses. J Bacteriol., 557-569.

[2] Arber and Linn (1969) DNA modification and restrictionAnnu Rev Biochem., 467-500.

[3] Meselson and Yuan (1968) DNA restriction enzyme from E. coli. Nature, 1110-1114

[4] Smith and Wilcox (1970) A restriction enzyme from Hemophilus influenzae. I. Purification and general properties. J Mol Biol., 379-391.